Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,11-Dibromo-5,8-dibutyl[4]helicene

Hiroyuki Isobe,* Taisuke Matsuno, Shunpei Hitosugi and Waka Nakanishi

Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan Correspondence e-mail: isobe@m.tohoku.ac.jp

Received 24 February 2012; accepted 26 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.069; data-to-parameter ratio = 19.7.

A racemic mixture of the title compound, $C_{26}H_{26}Br_2$, a brominated [4]helicene, crystallizes, forming columns of stacked molecules. There are two crystallographically unique molecules in the asymmetric unit, both with the same helical handedness. As is typical with helicene congeners, the unique molecules show short interatomic contacts between H atoms at the fjord region, with H···H distances of 1.87 and 1.94 Å. Molecules with the same helical handedness segregate in the crystal packing, forming homochiral columns. The stacked molecules are piled in a column with alternate orientations. The shortest C···C distance in the stacked molecules is 3.306 (4) Å.

Related literature

For the synthesis, see: Ichikawa *et al.* (2008); Isobe *et al.* (2009); Nakanishi *et al.* (2011). For nonsubstituted [4]helicene, see: Hirshfeld *et al.* (1963). For halogenated [4]helicenes, see: Amsharov *et al.* (2009); Bae *et al.* (2007). For an optical application of stacking helicenes, see: Verbiest *et al.* (1998).

Experimental

Crystal data

2	
$C_{26}H_{26}Br_2$	c = 22.552 (7) Å
$M_r = 498.29$	$\alpha = 75.012 \ (4)^{\circ}$
Triclinic, P1	$\beta = 84.682 \ (4)^{\circ}$
a = 7.611 (2) Å	$\gamma = 79.067 \ (4)^{\circ}$
b = 13.394 (4) Å	$V = 2178.2 (11) \text{ Å}^2$

Z = 4Mo $K\alpha$ radiation $\mu = 3.73 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.317, \ T_{\rm max} = 0.707$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.069$ S = 1.0210029 reflections $\begin{array}{l} T=100 \ \mathrm{K} \\ 0.40 \ \times \ 0.10 \ \times \ 0.10 \ \mathrm{mm} \end{array}$

organic compounds

25036 measured reflections 10029 independent reflections 7642 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

 $\begin{array}{l} \text{509 parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.58 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*, Yado-kari-XG 2009 (Kabuto *et al.*, 2009) and *publCIF* (Westrip, 2010).

This study was partly supported by KAKENHI (21685005, 20108015, 22550094) and the Asahi Glass Foundation. We thank Professor T. Iwamoto (Tohoku University) for the X-ray instrument and JEOL for the DART MS instrument. A generous gift of HFIP from Central Glass Co. is also gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2148).

References

- Amsharov, K. Y., Kabdulov, M. A. & Jansen, M. (2009). Eur. J. Org. Chem. pp. 6328–6335.
- Bae, S., Mah, H., Chaturvedi, S., Jeknic, T. M., Baird, W. M., Katz, A. K., Carrell, H. L., Glusker, J. P., Okazaki, T., Laali, K. K., Zajc, B. & Lakshman, M. K. (2007). J. Org. Chem. 72, 7625–7633.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hirshfeld, F. L., Sandler, S. & Schmidt, G. M. J. (1963). J. Chem. Soc. 2108–2125.
- Ichikawa, J., Yokota, M., Kudo, T. & Umezaki, S. (2008). Angew. Chem. Int. Ed. 47, 4870–4873.
- Isobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T. & Ichikawa, J. (2009). Org. Lett. 11, 4026–4028.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nakanishi, W., Matsuno, T., Ichikawa, J. & Isobe, H. (2011). Angew. Chem. Int. Ed. 50, 6048–6051.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Verbiest, T., Elshocht, S. V., Kauranen, M., Hellemans, L., Snauwaert, J., Nuckolls, C., Katz, T. J. & Persoons, A. (1998). Science, 30, 913–915.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o1239 [doi:10.1107/S1600536812013141]

2,11-Dibromo-5,8-dibutyl[4]helicene

Hiroyuki Isobe, Taisuke Matsuno, Shunpei Hitosugi and Waka Nakanishi

Comment

Columnar assembly of polycyclic aromatic hydrocarbons (PAH) is attractive in materials science. The assembly of helicenes, PAH with helically aligned sp^2 -carbons, is of particular interest for unique applications such as second-order nonlinear optical materials from [6]helicene (Verbiest et al., 1998). Smaller helicenes, on the other hand, have been less attractive, as the molecule is too small for columnar assembly. For instance, the smallest helicene, [4]helicene, packs in a crystal with a herringbone motif (Hirshfeld et al., 1963). Recently, a few examples of halogenated [4]helicenes have been reported (Amsharov et al., 2009; Bae et al., 2007; Isobe et al., 2009), which indicate beneficial effects of halogen substituents for the stacking assembly. However, various forms of the stacking structures are found even among these rare examples. We found that additional effects from the substituents other than the halogen can affect the packing structure. We previously reported a crystallographic analysis of 2,11-dibromo-5,8-dimethyl[4]helicene and found that the enantiomers of 2,11-dibromo-5,8-dimethyl[4]helicene segregate to form homochiral columns of the stacking molecules (Isobe et al., 2009). By changing the alkyl substituents at 5,8-position, we found a different form of columnar assembly. The asymmetric unit of the title compound is shown in Fig. 1. A set of alternate molecular pairs in a column is observed as non-equivalent molecules in the asymmetric unit. The interatomic distances between the hydrogen atoms at the fjord region are 1.87 Å and 1.94 Å. The packing structures are shown in Fig. 2 and 3. Each of the enantiomers segregate to form homochiral columns (Fig. 2). Unlike 5.8-dimethyl derivative that formed the stack with a synchronized orientation (Isobe et al., 2009), the title compound with 5,8-dibutyl substituents formed the stack with an alternating orientation (Fig. 3) with the shortest intermolecular C···C distance of 3.306 (4) Å between C1 and C42 (Fig. 1).

Experimental

The title compound was synthesized from difluoroalkene through acid-mediated intramolecular cyclization and dehydrogenative aromatization as reported in the literatures (Ichikawa *et al.*, 2008; Nakanishi *et al.*, 2011). A single-crystal suitable for X-ray crystallographic analysis was obtained by slow evaporation from a mixture of hexane and 2-propanol.

Refinement

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95, 0.99 and 0.98 Å for CH (aromatic), CH₂ and CH₃, respectively, with $U_{iso}(H) = 1.2U_{eq}(C)$ for CH (aromatic) and CH₂, and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008), Yadokari-XG 2009 (Kabuto *et al.*, 2009) and *publCIF*

(Westrip, 2010).

Figure 1

Molecular structures of the title compound with displacement ellipsoids drawn at the 50% probability level. Two nonequivalent molecules for (P)-form are shown. Note that the two structures differ only slightly at the methylene chain and that the enantiomeric (M)-form can be found as the mirror geometries.

Figure 2

Packing structure of the title compound, viewed along the *b* axis. The carbon atoms of enantiomers are colored differently. Color code: C for (*P*)-form = green, C for (*M*)-form = blue, Br = brown. Hydrogen atoms are omitted for clarity. Note that one colomn comprise single enantiomeric molecules with an alternate stack of two crystallographically unique molecules.

Figure 3

Stacking structure of the (P)-form. Hydrogen atoms are omitted for clarity.

2,11-Dibromo-5,8-dibutyl[4]helicene

Crystal data C₂₆H₂₆Br₂ $M_r = 498.29$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.611 (2) Å b = 13.394 (4) Å c = 22.552 (7) Å a = 75.012 (4)° $\beta = 84.682$ (4)° $\gamma = 79.067$ (4)° V = 2178.2 (11) Å³

Z = 4 F(000) = 1008 $D_x = 1.519 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 7028 reflections $\theta = 2.7-27.8^{\circ}$ $\mu = 3.73 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.40 \times 0.10 \times 0.10 \text{ mm}$ Data collection

Bruker APEXII CCD area-detector diffractometer	$T_{\min} = 0.317, T_{\max} = 0.707$ 25036 measured reflections
Radiation source: Bruker TXS fine-focus rotating anode	10029 independent reflections 7642 reflections with $I > 2\sigma(I)$
Bruker Helios multilayer confocal mirror monochromator	$R_{\rm int} = 0.038$ $ heta_{ m max} = 28.0^{\circ}, \ heta_{ m min} = 1.6^{\circ}$
Detector resolution: 8.333 pixels mm ⁻¹	$h = -9 \rightarrow 9$
phi and ω scans	$k = -17 \rightarrow 17$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$l = -29 \rightarrow 29$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.069$	neighbouring sites
S = 1.02	H-atom parameters constrained
10029 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0289P)^2 + 0.3827P]$
509 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.58 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br2	0.69711 (3)	0.70118 (2)	0.060451 (12)	0.02587 (7)
Br1	1.16728 (4)	0.43519 (2)	0.260717 (13)	0.02937 (7)
Br3	-0.05183 (3)	1.083930 (19)	0.395653 (12)	0.02066 (7)
Br4	0.15219 (4)	1.263921 (19)	0.131483 (13)	0.02509 (7)
C17	0.7427 (3)	0.84372 (19)	0.20139 (11)	0.0172 (5)
C11	0.6991 (3)	0.8033 (2)	0.10549 (12)	0.0208 (6)
C5	0.8009 (3)	0.76413 (19)	0.39852 (11)	0.0187 (5)
C24	0.6615 (3)	1.22388 (19)	0.21135 (12)	0.0229 (6)
H24	0.5651	1.2175	0.2441	0.027*
H24A	0.7775	1.2054	0.2314	0.027*
C6	0.7382 (3)	0.8623 (2)	0.36512 (11)	0.0196 (5)
H6	0.6946	0.9155	0.3863	0.024*
C9	0.6639 (3)	0.9822 (2)	0.10803 (11)	0.0216 (6)
H9	0.6378	1.0547	0.0880	0.026*
C14	0.8766 (3)	0.68580 (19)	0.36537 (12)	0.0178 (5)
C2	1.0445 (3)	0.53591 (19)	0.30318 (12)	0.0206 (6)

C20	0.7004 (3)	0.8207 (2)	0.49937 (11)	0.0215 (6)
H20	0.7607	0.8828	0.4870	0.026*
H20A	0.5765	0.8427	0.4852	0.026*
C12	0.7336 (3)	0.7702 (2)	0.16657 (12)	0.0201 (5)
H12	0.7516	0.6974	0.1860	0.024*
C25	0.6396 (4)	1.3374 (2)	0.17339 (12)	0.0252 (6)
H25	0.5173	1.3586	0.1578	0.030*
H25A	0.7256	1.3418	0.1375	0.030*
C23	0.6547 (3)	1.14628 (19)	0.17281 (11)	0.0204 (5)
H23	0.5368	1.1645	0.1540	0.025*
H23A	0.7472	1.1563	0.1389	0.025*
C13	0.8691 (3)	0.70858 (19)	0.29984 (11)	0.0172 (5)
C8	0.6825 (3)	1.03148 (19)	0.20605 (12)	0.0185 (5)
C21	0.6942 (3)	0.7827 (2)	0.56915 (11)	0.0215 (6)
H21	0.8181	0.7637	0.5834	0.026*
H21A	0.6392	0.7186	0.5814	0.026*
C19	0.7995 (3)	0.73642 (19)	0.46809 (11)	0.0200 (5)
H19	0.9251	0.7185	0.4806	0.024*
H19A	0.7448	0.6726	0.4838	0.024*
C7	0.6867 (3)	0.99747 (19)	0.26827 (11)	0.0191 (5)
H7	0.6565	1.0478	0.2921	0.023*
C3	1.0465 (3)	0.5111 (2)	0.36730 (12)	0.0215 (6)
Н3	1.1022	0.4441	0.3897	0.026*
C1	0.9613 (3)	0.63116 (19)	0.27019 (12)	0.0194 (5)
H1	0.9654	0.6457	0.2266	0.023*
C16	0.7346 (3)	0.88965 (19)	0.29932 (11)	0.0174 (5)
C22	0.5882(4)	0.8647 (2)	0.60081 (13)	0.0286 (6)
H22	0.6393	0.9292	0 5878	0.043*
H22A	0.5944	0.8378	0.6455	0.043*
H22B	0.4629	0.8796	0 5895	0.043*
C10	0.6659 (3)	0.9092 (2)	0.07497(12)	0.0227 (6)
H10	0.6450	0.9303	0.0323	0.027*
C18	0.7001 (3)	0.95204 (19)	0.17166 (11)	0.027
C15	0.7801(3)	0.81207 (19)	0.26662 (11)	0.0176(5)
C4	0.9660(3)	0.51207(19) 0.58630(19)	0.20002(11) 0.39673(12)	0.0170(5)
H4	0.9702	0.5710	0.4402	0.025*
C31	0.3858(3)	0.68314(18)	0.34132(10)	0.023
C27	0.1242(3)	0.00514(10) 0.95644(18)	0.31852(11)	0.0136(5)
U27	0.1242(3)	1 0115	0.2860	0.0140 (3)
C28	0.0074 0.1018 (3)	0.96479 (18)	0.2309 0.37815 (11)	0.013
C26	0.1010(3)	0.90479(18) 0.40584(18)	0.37603(11)	0.0135(5)
U40	0.3011 (3)	0.45584 (18)	0.3570	0.0148 (3)
H46A	0.4770	0.5145	0.3451	0.018*
C34	0.0383	0.3143	0.3451 0.12655 (11)	0.015
C/3	0.2271(3) 0.2110(3)	0.03667 (18)	0.12000(11) 0.18604(11)	0.0133(3) 0.0151(5)
C43	0.2110(3)	0.93007 (10) 0.41242 (19)	0.10004(11) 0.42115(11)	0.0151(5) 0.0164(5)
U47	0.0410 (5)	0.41245 (18)	0.45115 (11)	0.0104(3)
114/ 11/7/	0.7103	0.3800	0.4520	0.020*
114/A	0.3432	0.3077	0.400/	0.020°
032	0.3022 (3)	0.00700 (18)	0.20404 (11)	0.0142 (0)

H32	0.4288	0.6023	0.2770	0.017*
C38	0.2047 (3)	1.04416 (18)	0.18422 (11)	0.0157 (5)
H38	0.2313	1.0632	0.2197	0.019*
C39	0.2304 (3)	0.86706 (18)	0.30324 (10)	0.0129 (5)
C41	0.2525 (3)	0.85374 (18)	0.24114 (10)	0.0137 (5)
C37	0.1605 (3)	1.12078 (18)	0.13162 (12)	0.0186 (5)
C35	0.1400 (3)	0.99264 (19)	0.07767 (11)	0.0190 (5)
H35	0.1184	0.9755	0.0410	0.023*
C30	0.2797 (3)	0.79725 (19)	0.41311 (11)	0.0162 (5)
H30	0.3333	0.7428	0.4456	0.019*
C51	0.2167 (4)	0.6369 (2)	0.00702 (12)	0.0270 (6)
H51	0.3125	0.6669	-0.0207	0.032*
H51A	0.1001	0.6732	-0.0104	0.032*
C33	0.2958 (3)	0.72843 (18)	0.17626 (10)	0.0148 (5)
H33	0.3355	0.6584	0.1728	0.018*
C44	0.1886 (3)	0.91036 (18)	0.13003 (10)	0.0147 (5)
C42	0.3111 (3)	0.75217 (18)	0.23372 (11)	0.0136 (5)
C49	0.1996 (3)	0.77430 (19)	0.06719 (11)	0.0187 (5)
H49	0.2838	0.8064	0.0350	0.022*
H49A	0.0766	0.8067	0.0543	0.022*
C40	0.3019 (3)	0.78316 (18)	0.35275 (10)	0.0129 (5)
C29	0.1832 (3)	0.88721 (19)	0.42630 (11)	0.0167 (5)
H29	0.1723	0.8962	0.4670	0.020*
C48	0.7509 (3)	0.31728 (19)	0.41193 (12)	0.0219 (6)
H48	0.6729	0.2843	0.3935	0.033*
H48A	0.8044	0.2667	0.4481	0.033*
H48B	0.8460	0.3397	0.3818	0.033*
C50	0.2256 (3)	0.65698 (19)	0.07008 (11)	0.0200 (5)
H50	0.3433	0.6222	0.0871	0.024*
H50A	0.1316	0.6257	0.0981	0.024*
C36	0.1230 (3)	1.0964 (2)	0.07799 (12)	0.0212 (6)
H36	0.0865	1.1503	0.0426	0.025*
C45	0.4620 (3)	0.59480 (18)	0.39403 (10)	0.0144 (5)
H45	0.3626	0.5757	0.4239	0.017*
H45A	0.5454	0.6209	0.4152	0.017*
C26	0.6699 (4)	1.4139 (2)	0.20959 (14)	0.0331 (7)
H26	0.5832	1.4114	0.2447	0.050*
H26A	0.6544	1.4852	0.1829	0.050*
H26B	0.7917	1.3943	0.2245	0.050*
C52	0.2384 (4)	0.5200 (2)	0.00990 (14)	0.0354 (7)
H52	0.3515	0.4834	0.0286	0.053*
H52A	0.2392	0.5104	-0.0318	0.053*
H52B	0.1384	0.4912	0.0347	0.053*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br2	0.02828 (15)	0.02909 (16)	0.02485 (15)	-0.00958 (11)	0.00169 (11)	-0.01247 (12)
Br1	0.02749 (15)	0.02402 (15)	0.03654 (17)	0.00126 (11)	0.00085 (12)	-0.01227 (13)
Br3	0.02107 (13)	0.01674 (13)	0.02431 (15)	0.00260 (10)	-0.00162 (10)	-0.00935 (11)

Br4	0.03039 (15)	0.01316 (13)	0.02919 (16)	-0.00265 (10)	-0.00684 (11)	0.00038 (11)
C17	0.0124 (12)	0.0211 (14)	0.0191 (13)	-0.0049 (10)	0.0028 (9)	-0.0066 (11)
C11	0.0158 (12)	0.0281 (15)	0.0231 (15)	-0.0081 (11)	0.0034 (10)	-0.0130 (12)
C5	0.0159 (12)	0.0212 (14)	0.0199 (14)	-0.0077 (10)	-0.0008 (10)	-0.0033 (11)
C24	0.0257 (14)	0.0182 (14)	0.0229 (15)	-0.0035 (11)	-0.0013 (11)	-0.0019 (12)
C6	0.0182 (13)	0.0223 (14)	0.0222 (14)	-0.0062 (10)	0.0017 (10)	-0.0113 (12)
C9	0.0199 (13)	0.0235 (14)	0.0197 (14)	-0.0020 (11)	0.0009 (10)	-0.0040 (12)
C14	0.0111 (11)	0.0186 (13)	0.0249 (14)	-0.0070 (10)	-0.0006 (10)	-0.0047 (11)
C2	0.0136 (12)	0.0188 (14)	0.0318 (16)	-0.0044 (10)	0.0036 (10)	-0.0108 (12)
C20	0.0215 (13)	0.0213 (14)	0.0223 (14)	-0.0048 (11)	-0.0028 (10)	-0.0052 (12)
C12	0.0154 (12)	0.0192 (14)	0.0247 (15)	-0.0036 (10)	0.0015 (10)	-0.0043 (11)
C25	0.0271 (14)	0.0209 (14)	0.0258 (15)	-0.0034 (11)	-0.0028 (11)	-0.0024 (12)
C23	0.0192 (13)	0.0198 (14)	0.0216 (14)	-0.0022 (10)	-0.0028 (10)	-0.0040 (11)
C13	0.0128 (12)	0.0173 (13)	0.0225 (14)	-0.0079 (10)	0.0010 (10)	-0.0036 (11)
C8	0.0122 (12)	0.0176 (13)	0.0247 (14)	-0.0015 (10)	-0.0012 (10)	-0.0043 (11)
C21	0.0200 (13)	0.0234 (14)	0.0214 (14)	-0.0064 (11)	-0.0004 (10)	-0.0039 (12)
C19	0.0206 (13)	0.0203 (14)	0.0186 (14)	-0.0073 (10)	0.0004 (10)	-0.0018 (11)
C7	0.0179 (13)	0.0179 (13)	0.0224 (14)	-0.0017 (10)	-0.0014 (10)	-0.0074 (11)
C3	0.0180 (13)	0.0153 (13)	0.0294 (16)	-0.0043 (10)	-0.0022 (11)	-0.0010 (12)
C1	0.0143 (12)	0.0229 (14)	0.0226 (14)	-0.0077 (10)	0.0022 (10)	-0.0063 (11)
C16	0.0127 (12)	0.0202 (13)	0.0207 (14)	-0.0050 (10)	-0.0010 (10)	-0.0056 (11)
C22	0.0265 (15)	0.0306 (16)	0.0308 (16)	-0.0051 (12)	0.0029 (12)	-0.0125 (13)
C10	0.0188 (13)	0.0294 (15)	0.0195 (14)	-0.0045 (11)	0.0011 (10)	-0.0058 (12)
C18	0.0129 (12)	0.0217 (14)	0.0190 (14)	-0.0048 (10)	0.0003 (10)	-0.0028 (11)
C15	0.0131 (12)	0.0197 (13)	0.0209 (14)	-0.0058 (10)	0.0007 (10)	-0.0048 (11)
C4	0.0208 (13)	0.0199 (14)	0.0213 (14)	-0.0066 (10)	-0.0007 (10)	-0.0035 (11)
C31	0.0113 (11)	0.0134 (12)	0.0135 (12)	-0.0030 (9)	0.0008 (9)	-0.0019 (10)
C27	0.0138 (12)	0.0112 (12)	0.0179 (13)	-0.0010 (9)	-0.0023 (9)	-0.0021 (10)
C28	0.0148 (12)	0.0109 (12)	0.0211 (13)	-0.0011 (9)	0.0013 (9)	-0.0069 (10)
C46	0.0157 (12)	0.0132 (12)	0.0140 (13)	-0.0005 (9)	-0.0012 (9)	-0.0017 (10)
C34	0.0126 (11)	0.0200 (13)	0.0134 (13)	-0.0030 (9)	0.0007 (9)	-0.0034 (10)
C43	0.0117 (11)	0.0171 (13)	0.0147 (13)	-0.0014 (9)	-0.0015 (9)	-0.0015 (10)
C47	0.0185 (12)	0.0129 (12)	0.0156 (13)	-0.0004 (9)	-0.0005 (10)	-0.0017 (10)
C32	0.0140 (11)	0.0114 (12)	0.0159 (13)	-0.0013 (9)	0.0002 (9)	-0.0019 (10)
C38	0.0142 (12)	0.0178 (13)	0.0148 (13)	-0.0025 (9)	-0.0011 (9)	-0.0037 (10)
C39	0.0114 (11)	0.0130 (12)	0.0145 (12)	-0.0037 (9)	-0.0001 (9)	-0.0029 (10)
C41	0.0115 (11)	0.0173 (13)	0.0120 (12)	-0.0032 (9)	-0.0007 (9)	-0.0024 (10)
C37	0.0184 (12)	0.0119 (12)	0.0234 (14)	-0.0024 (10)	-0.0007 (10)	-0.0007 (11)
C35	0.0176 (12)	0.0218 (14)	0.0161 (13)	-0.0017 (10)	-0.0027 (10)	-0.0027 (11)
C30	0.0189 (12)	0.0147 (13)	0.0143 (13)	-0.0021 (10)	-0.0037 (9)	-0.0019 (10)
C51	0.0380 (16)	0.0217 (15)	0.0223 (15)	-0.0033 (12)	-0.0067 (12)	-0.0068 (12)
C33	0.0154 (12)	0.0137 (12)	0.0145 (13)	-0.0023 (9)	0.0012 (9)	-0.0031 (10)
C44	0.0141 (12)	0.0153 (12)	0.0121 (12)	-0.0028 (9)	0.0000 (9)	0.0010 (10)
C42	0.0123 (11)	0.0147 (12)	0.0138 (12)	-0.0034 (9)	0.0003 (9)	-0.0033 (10)
C49	0.0222 (13)	0.0197 (14)	0.0133 (13)	-0.0022 (10)	-0.0035 (10)	-0.0026 (11)
C40	0.0115 (11)	0.0128 (12)	0.0134 (12)	-0.0027 (9)	-0.0018 (9)	-0.0008 (10)
C29	0.0211 (13)	0.0173 (13)	0.0132 (13)	-0.0044 (10)	-0.0003 (10)	-0.0054 (10)
C48	0.0239 (14)	0.0164 (13)	0.0225 (14)	0.0013 (10)	-0.0012 (11)	-0.0029 (11)
C50	0.0235 (13)	0.0207 (14)	0.0153 (13)	-0.0038 (11)	-0.0024 (10)	-0.0031 (11)

supplementary materials

C36	0.0221 (13)	0.0185 (14)	0.0178 (14)	-0.0004 (10)	-0.0034 (10)	0.0033 (11)
C45	0.0145 (12)	0.0156 (13)	0.0133 (12)	-0.0012 (9)	-0.0015 (9)	-0.0047 (10)
C26	0.0366 (17)	0.0202 (15)	0.0436 (19)	-0.0071 (12)	0.0009 (14)	-0.0089 (14)
C52	0.055 (2)	0.0232 (16)	0.0306 (17)	-0.0064 (14)	-0.0089 (14)	-0.0102 (14)

Geometric parameters (Å, °)

I (
Br2—C11	1.906 (2)	C31—C40	1.446 (3)
Br1—C2	1.906 (2)	C31—C45	1.513 (3)
Br3—C28	1.898 (2)	C27—C28	1.371 (3)
Br4—C37	1.905 (2)	C27—C39	1.414 (3)
C17—C18	1.421 (3)	C27—H27	0.9500
C17—C12	1.423 (3)	C28—C29	1.393 (3)
C17—C15	1.463 (3)	C46—C47	1.525 (3)
C11—C12	1.367 (4)	C46—C45	1.528 (3)
C11—C10	1.393 (4)	C46—H46	0.9900
C5—C6	1.356 (3)	C46—H46A	0.9900
C5—C14	1.445 (3)	C34—C33	1.357 (3)
C5—C19	1.515 (3)	C34—C44	1.449 (3)
C24—C25	1.526 (3)	C34—C49	1.519 (3)
C24—C23	1.528 (3)	C43—C38	1.422 (3)
C24—H24	0.9900	C43—C44	1.429 (3)
C24—H24A	0.9900	C43—C41	1.450 (3)
C6—C16	1.435 (3)	C47—C48	1.525 (3)
С6—Н6	0.9500	C47—H47	0.9900
C9—C10	1.372 (3)	C47—H47A	0.9900
C9—C18	1.424 (3)	C32—C42	1.430 (3)
С9—Н9	0.9500	С32—Н32	0.9500
C14—C4	1.413 (3)	C38—C37	1.374 (3)
C14—C13	1.434 (3)	C38—H38	0.9500
C2—C1	1.368 (3)	C39—C40	1.427 (3)
C2—C3	1.398 (4)	C39—C41	1.448 (3)
C20—C21	1.523 (3)	C41—C42	1.397 (3)
C20—C19	1.527 (3)	C37—C36	1.398 (3)
С20—Н20	0.9900	C35—C36	1.372 (3)
C20—H20A	0.9900	C35—C44	1.414 (3)
С12—Н12	0.9500	С35—Н35	0.9500
C25—C26	1.526 (4)	C30—C29	1.375 (3)
С25—Н25	0.9900	C30—C40	1.412 (3)
C25—H25A	0.9900	C30—H30	0.9500
С23—С8	1.510(3)	C51—C50	1.523 (3)
С23—Н23	0.9900	C51—C52	1.528 (4)
С23—Н23А	0.9900	C51—H51	0.9900
C13—C1	1.418 (3)	C51—H51A	0.9900
C13—C15	1.461 (3)	C33—C42	1.431 (3)
C8—C7	1.360 (3)	С33—Н33	0.9500
C8—C18	1.451 (3)	C49—C50	1.531 (3)
C21—C22	1.526 (3)	C49—H49	0.9900
C21—H21	0.9900	C49—H49A	0.9900
C21—H21A	0.9900	С29—Н29	0.9500

C19—H19	0.9900	C48—H48	0.9800
C19—H19A	0.9900	C48—H48A	0.9800
C7—C16	1.426 (3)	C48—H48B	0.9800
С7—Н7	0.9500	С50—Н50	0.9900
C3—C4	1.366 (3)	С50—Н50А	0.9900
С3—Н3	0.9500	С36—Н36	0.9500
C1—H1	0.9500	C45—H45	0.9900
C16—C15	1.399 (3)	C45—H45A	0.9900
С22—Н22	0.9800	С26—Н26	0.9800
C22—H22A	0.9800	C26—H26A	0.9800
C22—H22B	0.9800	C26—H26B	0.9800
C10—H10	0.9500	С52—Н52	0.9800
C4—H4	0.9500	С52—Н52А	0.9800
C31—C32	1.354 (3)	С52—Н52В	0.9800
C18—C17—C12	117.5 (2)	C27—C28—C29	122.1 (2)
C18—C17—C15	119.6 (2)	C27—C28—Br3	118.65 (18)
C12—C17—C15	122.8 (2)	C29—C28—Br3	119.19 (18)
C12—C11—C10	122.2 (2)	C47—C46—C45	112.13 (19)
C12—C11—Br2	119.0 (2)	C47—C46—H46	109.2
C10—C11—Br2	118.81 (19)	C45—C46—H46	109.2
C6—C5—C14	117.7 (2)	C47—C46—H46A	109.2
C6—C5—C19	122.2 (2)	C45—C46—H46A	109.2
C14—C5—C19	120.1 (2)	H46—C46—H46A	107.9
C25—C24—C23	112.8 (2)	C33—C34—C44	117.9 (2)
C25—C24—H24	109.0	C33—C34—C49	122.2 (2)
C23—C24—H24	109.0	C44—C34—C49	119.8 (2)
C25—C24—H24A	109.0	C38—C43—C44	117.9 (2)
C23—C24—H24A	109.0	C38—C43—C41	122.3 (2)
H24—C24—H24A	107.8	C44—C43—C41	119.6 (2)
C5—C6—C16	123.1 (2)	C48—C47—C46	111.6 (2)
С5—С6—Н6	118.4	C48—C47—H47	109.3
С16—С6—Н6	118.4	C46—C47—H47	109.3
C10—C9—C18	121.6 (2)	C48—C47—H47A	109.3
С10—С9—Н9	119.2	C46—C47—H47A	109.3
С18—С9—Н9	119.2	H47—C47—H47A	108.0
C4—C14—C13	118.6 (2)	C31—C32—C42	122.6 (2)
C4—C14—C5	120.5 (2)	С31—С32—Н32	118.7
C13—C14—C5	120.9 (2)	С42—С32—Н32	118.7
C1—C2—C3	121.9 (2)	C37—C38—C43	120.6 (2)
C1-C2-Br1	119.31 (19)	С37—С38—Н38	119.7
C3—C2—Br1	118.80 (19)	C43—C38—H38	119.7
C21—C20—C19	112.4 (2)	C27—C39—C40	117.3 (2)
C21—C20—H20	109.1	C27—C39—C41	122.7 (2)
С19—С20—Н20	109.1	C40—C39—C41	119.7 (2)
C21—C20—H20A	109.1	C42—C41—C39	117.5 (2)
C19—C20—H20A	109.1	C42—C41—C43	117.2 (2)
H20—C20—H20A	107.9	C39—C41—C43	125.3 (2)
C11—C12—C17	120.8 (2)	C38—C37—C36	121.7 (2)

C11—C12—H12	119.6	C38 - C37 - Br4	119 17 (19)
C17—C12—H12	119.6	$C_{36} - C_{37} - Br_{4}$	119.14 (18)
C_{24} C_{25} C_{26}	113.2 (2)	$C_{36} = C_{35} = C_{44}$	112.14(10) 122.3(2)
$C_{24} = C_{25} = C_{20}$	108.9	C36_C35_H35	112.5 (2)
$C_{24} = C_{25} = H_{25}$	108.9	$C_{30} = C_{35} = H_{35}$	118.8
$C_{20} = C_{23} = H_{25}$	108.9	$C_{44} = C_{55} = 1155$	110.0 122.1(2)
C_{24} C_{25} H_{25A}	108.9	$C_{29} = C_{30} = C_{40}$	122.1(2)
125 - 125 - 1125 A	107.7	$C_{29} = C_{30} = H_{30}$	110.9
H23 - C23 - H23A	10/./	$C_{40} = C_{30} = H_{30}$	118.9
$C_{8} = C_{23} = C_{24}$	110.0 (2)	$C_{50} = C_{51} = C_{52}$	112.1 (2)
C8-C23-H23	108.1	C50—C51—H51	109.2
C24—C23—H23	108.1	С52—С51—Н51	109.2
С8—С23—Н23А	108.1	С50—С51—Н51А	109.2
С24—С23—Н23А	108.1	С52—С51—Н51А	109.2
H23—C23—H23A	107.3	H51—C51—H51A	107.9
C1—C13—C14	117.4 (2)	C34—C33—C42	122.7 (2)
C1—C13—C15	123.3 (2)	С34—С33—Н33	118.7
C14—C13—C15	119.2 (2)	С42—С33—Н33	118.7
C7—C8—C18	117.0 (2)	C35—C44—C43	118.5 (2)
C7—C8—C23	122.9 (2)	C35—C44—C34	121.2 (2)
C18—C8—C23	120.1 (2)	C43—C44—C34	120.1 (2)
C20—C21—C22	112.8 (2)	C41—C42—C32	120.4 (2)
C20—C21—H21	109.0	C41—C42—C33	120.6 (2)
C22—C21—H21	109.0	C32—C42—C33	118.9 (2)
C20—C21—H21A	109.0	C34—C49—C50	115.8 (2)
C22—C21—H21A	109.0	С34—С49—Н49	108.3
H21—C21—H21A	107.8	С50—С49—Н49	108.3
C5—C19—C20	116.3 (2)	С34—С49—Н49А	108.3
С5—С19—Н19	108.2	С50—С49—Н49А	108.3
С20—С19—Н19	108.2	H49—C49—H49A	107.4
С5—С19—Н19А	108.2	C30—C40—C39	119.1 (2)
C20—C19—H19A	108.2	C_{30} C_{40} C_{31}	120.8(2)
H19—C19—H19A	107.4	C_{39} C_{40} C_{31}	120.0(2)
C8-C7-C16	122.9(2)	C_{30} C_{29} C_{28}	1179(2)
C8-C7-H7	118 5	C_{30} C_{29} H_{29}	121.0
$C_{16} C_{7} H_{7}$	118.5	$C_{28} = C_{29} = H_{29}$	121.0
$C_{10} = C_{10} = C_{10}$	118.0(2)	$C_{20} = C_{20} = 1129$	121.0
C4 = C3 = C2	110.0 (2)	C47 = C48 = 1148	109.5
$C_4 = C_3 = H_3$	121.0	C47 - C40 - H40A	109.5
$C_2 = C_3 = H_3$	121.0	H48 - C48 - H48A	109.5
$C_2 = C_1 = C_{13}$	121.2 (2)	C4/-C48H48B	109.5
C2—C1—HI	119.4	H48—C48—H48B	109.5
	119.4	H48A—C48—H48B	109.5
C15—C16—C7	121.1 (2)	C51—C50—C49	112.0 (2)
C15—C16—C6	120.4 (2)	С51—С50—Н50	109.2
C'/C16C6	118.5 (2)	C49—C50—H50	109.2
C21—C22—H22	109.5	C51—C50—H50A	109.2
C21—C22—H22A	109.5	C49—C50—H50A	109.2
H22—C22—H22A	109.5	H50—C50—H50A	107.9
C21—C22—H22B	109.5	C35—C36—C37	118.4 (2)
H22—C22—H22B	109.5	С35—С36—Н36	120.8

H22A—C22—H22B	109.5	С37—С36—Н36	120.8
C9—C10—C11	118.4 (2)	C31—C45—C46	115.26 (19)
С9—С10—Н10	120.8	C31—C45—H45	108.5
C11—C10—H10	120.8	C46—C45—H45	108.5
C17—C18—C9	119.2 (2)	C31—C45—H45A	108.5
C17—C18—C8	120.8 (2)	C46—C45—H45A	108.5
C9—C18—C8	119.8 (2)	H45—C45—H45A	107.5
C16—C15—C13	117.4 (2)	С25—С26—Н26	109.5
C16—C15—C17	116.5 (2)	C25—C26—H26A	109.5
C13—C15—C17	126.0 (2)	H26—C26—H26A	109.5
C3—C4—C14	122.9 (2)	C25—C26—H26B	109.5
C3—C4—H4	118.6	H26—C26—H26B	109.5
C14—C4—H4	118.6	H26A—C26—H26B	109.5
C32—C31—C40	118.3 (2)	С51—С52—Н52	109.5
C32—C31—C45	121.9 (2)	C51—C52—H52A	109.5
C40—C31—C45	119.6 (2)	H52—C52—H52A	109.5
C28—C27—C39	121.0 (2)	C51—C52—H52B	109.5
С28—С27—Н27	119.5	Н52—С52—Н52В	109.5
С39—С27—Н27	119.5	Н52А—С52—Н52В	109.5
C14—C5—C6—C16	3.6 (3)	C39—C27—C28—C29	0.8 (3)
C19—C5—C6—C16	-178.6 (2)	C39—C27—C28—Br3	-177.06 (17)
C6-C5-C14-C4	171.4 (2)	C45—C46—C47—C48	-175.9 (2)
C19—C5—C14—C4	-6.5 (3)	C40—C31—C32—C42	4.8 (3)
C6-C5-C14-C13	-6.1 (3)	C45—C31—C32—C42	-179.9 (2)
C19—C5—C14—C13	176.1 (2)	C44—C43—C38—C37	6.4 (3)
C10-C11-C12-C17	-2.1 (4)	C41—C43—C38—C37	-178.4 (2)
Br2-C11-C12-C17	177.71 (17)	C28—C27—C39—C40	4.5 (3)
C18—C17—C12—C11	5.1 (3)	C28—C27—C39—C41	177.9 (2)
C15—C17—C12—C11	-179.3 (2)	C27—C39—C41—C42	-160.5 (2)
C23—C24—C25—C26	-172.6 (2)	C40—C39—C41—C42	12.7 (3)
C25—C24—C23—C8	177.7 (2)	C27—C39—C41—C43	16.6 (3)
C4—C14—C13—C1	-3.5 (3)	C40—C39—C41—C43	-170.2 (2)
C5-C14-C13-C1	174.1 (2)	C38—C43—C41—C42	-160.0 (2)
C4—C14—C13—C15	-178.4 (2)	C44—C43—C41—C42	15.2 (3)
C5-C14-C13-C15	-0.9 (3)	C38—C43—C41—C39	22.9 (3)
C24—C23—C8—C7	9.6 (3)	C44—C43—C41—C39	-161.9 (2)
C24—C23—C8—C18	-172.4 (2)	C43—C38—C37—C36	-1.0 (4)
C19—C20—C21—C22	-177.4 (2)	C43—C38—C37—Br4	179.58 (17)
C6—C5—C19—C20	8.1 (3)	C44—C34—C33—C42	7.7 (3)
C14—C5—C19—C20	-174.1 (2)	C49—C34—C33—C42	-175.7 (2)
C21—C20—C19—C5	175.6 (2)	C36—C35—C44—C43	3.5 (3)
C18—C8—C7—C16	10.0 (3)	C36—C35—C44—C34	-172.3 (2)
C23—C8—C7—C16	-172.1 (2)	C38—C43—C44—C35	-7.5 (3)
C1—C2—C3—C4	-1.6 (4)	C41—C43—C44—C35	177.1 (2)
Br1—C2—C3—C4	176.61 (18)	C38—C43—C44—C34	168.3 (2)
C3—C2—C1—C13	-1.6 (4)	C41—C43—C44—C34	-7.0 (3)
Br1—C2—C1—C13	-179.74 (17)	C33—C34—C44—C35	171.3 (2)
C14—C13—C1—C2	4.1 (3)	C49—C34—C44—C35	-5.4 (3)

C15—C13—C1—C2	178.8 (2)	C33—C34—C44—C43	-4.4 (3)
C8—C7—C16—C15	0.3 (4)	C49—C34—C44—C43	178.9 (2)
C8—C7—C16—C6	178.8 (2)	C39—C41—C42—C32	-13.0 (3)
C5—C6—C16—C15	6.2 (4)	C43—C41—C42—C32	169.7 (2)
C5—C6—C16—C7	-172.4 (2)	C39—C41—C42—C33	165.1 (2)
C18—C9—C10—C11	1.9 (4)	C43—C41—C42—C33	-12.2 (3)
C12—C11—C10—C9	-1.5 (4)	C31—C32—C42—C41	4.4 (3)
Br2—C11—C10—C9	178.69 (18)	C31—C32—C42—C33	-173.7 (2)
C12—C17—C18—C9	-4.7 (3)	C34—C33—C42—C41	0.8 (3)
C15—C17—C18—C9	179.6 (2)	C34—C33—C42—C32	178.9 (2)
C12—C17—C18—C8	171.6 (2)	C33—C34—C49—C50	9.4 (3)
C15—C17—C18—C8	-4.1 (3)	C44—C34—C49—C50	-174.0 (2)
C10—C9—C18—C17	1.3 (4)	C29—C30—C40—C39	3.6 (3)
C10—C9—C18—C8	-175.0 (2)	C29—C30—C40—C31	-172.6 (2)
C7—C8—C18—C17	-7.8 (3)	C27—C39—C40—C30	-6.5 (3)
C23—C8—C18—C17	174.1 (2)	C41—C39—C40—C30	179.9 (2)
C7—C8—C18—C9	168.4 (2)	C27—C39—C40—C31	169.6 (2)
C23—C8—C18—C9	-9.6 (3)	C41—C39—C40—C31	-3.9(3)
C7—C16—C15—C13	165.5 (2)	C32—C31—C40—C30	171.3 (2)
C6-C16-C15-C13	-13.0 (3)	C45—C31—C40—C30	-4.2 (3)
C7—C16—C15—C17	-12.3 (3)	C32—C31—C40—C39	-4.8 (3)
C6-C16-C15-C17	169.2 (2)	C45—C31—C40—C39	179.71 (19)
C1-C13-C15-C16	-164.3 (2)	C40—C30—C29—C28	1.7 (3)
C14—C13—C15—C16	10.3 (3)	C27—C28—C29—C30	-4.0 (3)
C1—C13—C15—C17	13.3 (4)	Br3-C28-C29-C30	173.86 (17)
C14—C13—C15—C17	-172.1 (2)	C52—C51—C50—C49	-178.7 (2)
C18—C17—C15—C16	13.9 (3)	C34—C49—C50—C51	-173.3 (2)
C12—C17—C15—C16	-161.5 (2)	C44—C35—C36—C37	2.0 (4)
C18—C17—C15—C13	-163.7 (2)	C38—C37—C36—C35	-3.3 (4)
C12—C17—C15—C13	20.9 (4)	Br4—C37—C36—C35	176.13 (18)
C2-C3-C4-C14	2.1 (4)	C32—C31—C45—C46	9.6 (3)
C13—C14—C4—C3	0.4 (3)	C40—C31—C45—C46	-175.10 (19)
C5—C14—C4—C3	-177.1 (2)	C47—C46—C45—C31	177.42 (19)